Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Inorg Chem ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639416

RESUMO

Although crystalline metal-organic frameworks (MOFs) have gained a great deal of interest in the field of proton conduction in recent years, the low stability and poor proton conductivity (σ) of some MOFs have hindered their future applications. As a result, resolving the issues listed above must be prioritized. Due to their exceptional structural stability, MOFs with ferrocene groups that exhibit particular physical and chemical properties have drawn a lot of attention. This study describes the effective preparation of a set of three-dimensional ferrocene-based MOFs, MIL-53-FcDC-Al/Ga and CAU-43, containing both main group metals and 1,1'-ferrocene dicarboxylic acid (H2FcDC). Multiple measurements, including powder X-ray diffraction (PXRD), infrared (IR), and scanning electron microscopy (SEM), confirmed that the addition of ferrocene groups enhanced the thermal, water, and acid-base stabilities of the three MOFs. Consequently, their proton-conductive behaviors were meticulously measured utilizing the AC impedance approach, and their best proton conductivities are 5.20 × 10-3, 2.31 × 10-3, and 1.72 × 10-4 S/cm at 100 °C/98% relative humidity (RH), respectively. Excitingly, MIL-53-FcDC-Al/Ga demonstrated an extraordinarily ultrahigh σ of above 10-4 S·cm-1 under 30 °C/98% RH. Using data from structural analysis, PXRD, SEM, thermogravimetry (TG), and activation energy, their proton transport mechanisms were thoroughly examined. The fact that these MOFs are notably easy to assemble, inexpensive, toxin-free, and stable will increase the range of practical uses for them.

2.
PLoS One ; 19(3): e0300040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483916

RESUMO

INTRODUCTION: High levels of burnout are prevalent among Emergency Department staff due to chronic exposure to job stress. There is a lack of knowledge about anteceding factors and outcomes of burnout in this population. AIMS: To provide a comprehensive overview of burnout and identify its workplace antecedents and outcomes among Emergency Department staff. METHODS: The scoping study will follow the methodology outlined by the Joanna Briggs Institute. PubMed, Scopus, Web of Science, APA PsycInfo, and CINAHL databases will be searched using predefined strategies. Two reviewers will screen the title, abstract and full text separately based on the eligibility criteria. Data will be charted, coded, and narratively synthesized based on the job demands-resources model. CONCLUSION: The results will provide insights into the underlying work-related factors contributing to burnout and its implications for individuals, healthcare organizations, and patient care.


Assuntos
Esgotamento Profissional , Estresse Ocupacional , Humanos , Esgotamento Profissional/epidemiologia , Estresse Ocupacional/epidemiologia , Serviço Hospitalar de Emergência , Literatura de Revisão como Assunto
3.
J Colloid Interface Sci ; 657: 482-490, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070334

RESUMO

Obtaining crystalline materials with high structural stability as well as super proton conductivity is a challenging task in the field of energy and material chemistry. Therefore, two highly stable metal-organic frameworks (MOFs) with macro-ring structures and carboxylate groups, Zr-TCPP (1) and Hf-TCPP (2) assembled from low-toxicity as well as highly coordination-capable Zr(IV)/Hf(IV) cations and the multifunctional linkage, meso-tetra(4-carboxyphenyl)porphine (TCPP) have attracted our strong interest. Note that TCPP as a large-size rigid ligand with high symmetry and multiple coordination sites contributes to the formation of the two stable MOFs. Moreover, the pores with large sizes in the two MOFs favor the entry of more guest water molecules and thus result in high H2O-assisted proton conductivity. First, their distinguished structural stabilities covering water, thermal and chemical stabilities were verified by various determination approaches. Second, the dependence of the proton conductivity of the two MOFs on temperature and relative humidity (RH) is explored in depth. Impressively, MOFs 1 and 2 demonstrated the optimal proton conductivities of 4.5 × 10-4 and 0.78 × 10-3 S·cm-1 at 100 °C/98 % RH, respectively. Logically, based on the structural information, gas adsorption/desorption features, and activation energy values, their proton conduction mechanism was deduced and highlighted.

4.
Inorg Chem ; 62(51): 21309-21321, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38091472

RESUMO

In the field of proton conduction, the acquisition of crystalline metal-organic frameworks (MOFs) with high stability and ultrahigh proton conductivity has been of great research value and is worth continuous exploration. Here, we greenly synthesized a three-dimensional porous MOF (MOF-801-Ce) by using [(NH4)2Ce(NO3)6 and fumaric acid as starting materials and solvothermally synthesized Hf-UiO-66-NO2 by using HfCl4 and 2-nitroterephthalic acid as starting materials. A series of measurements have shown that both MOFs exhibit good water stability, acid-base stability, and thermal stability and demonstrate outstanding proton conductivity. At 100 °C and 98% relative humidity (RH), the proton conductivities (σ) could be 2.59 × 10-3 S·cm-1 for MOF-801-Ce and 0.89 × 10-3 S·cm-1 for Hf-UiO-66-NO2. To pursue higher proton conductivity, we further adopted the evaporation approach to encapsulate imidazole molecules in the pores of the two compounds, achieving the imidazole-encapsulated MOFs, Im@MOF-801-Ce and Im@Hf-UiO-66-NO2. As expected, their σ values were significantly boosted by almost an order of magnitude up to 10-2 S·cm-1. Finally, their proton-conductive mechanisms were explored in light of the structural information, gas adsorption/desorption, and other tests. The outstanding structural stability of these MOFs and their durability of the proton conduction capability manifested that they have great promise in electrochemical fields.

5.
Cell Stem Cell ; 30(12): 1624-1639.e8, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37989316

RESUMO

Reactivating silenced γ-globin expression through the disruption of repressive regulatory domains offers a therapeutic strategy for treating ß-hemoglobinopathies. Here, we used transformer base editor (tBE), a recently developed cytosine base editor with no detectable off-target mutations, to disrupt transcription-factor-binding motifs in hematopoietic stem cells. By performing functional screening of six motifs with tBE, we found that directly disrupting the BCL11A-binding motif in HBG1/2 promoters triggered the highest γ-globin expression. Via a side-by-side comparison with other clinical and preclinical strategies using Cas9 nuclease or conventional BEs (ABE8e and hA3A-BE3), we found that tBE-mediated disruption of the BCL11A-binding motif at the HBG1/2 promoters triggered the highest fetal hemoglobin in healthy and ß-thalassemia patient hematopoietic stem/progenitor cells while exhibiting no detectable DNA or RNA off-target mutations. Durable therapeutic editing by tBE persisted in repopulating hematopoietic stem cells, demonstrating that tBE-mediated editing in HBG1/2 promoters is a safe and effective strategy for treating ß-hemoglobinopathies.


Assuntos
Edição de Genes , Hemoglobinopatias , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Sistemas CRISPR-Cas , Mutação/genética , Hemoglobinopatias/genética , Hemoglobinopatias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/metabolismo
6.
Eur J Pediatr ; 182(12): 5519-5530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37782352

RESUMO

Castleman disease (CD) is a rare lymphoproliferative disorder of undetermined etiology. Unicentric CD (UCD) and multicentric CD (MCD) are two phenotypes of CD diagnosed by the histopathology of lymph nodes. We attempted to describe a pediatric CD cohort to optimize the management of this disease. We reviewed the medical records of pediatric patients diagnosed with CD between April, 2004, and October, 2022, at the Children's Hospital of Fudan University. Prognosis information was collected in January, 2023, by telephone inquiry. Twenty-two patients with UCD and 2 patients with MCD were identified, all with hyaline vascular (HV) type. The median ages at diagnosis were 10.75 years (IQR 8, 12.81) for UCD and 14.42 years (IQR 13.42, 15.42) for MCD. The most common lesion location of UCD was the neck (9/22, 40.91%) and abdomen (9/22, 40.91%). Systematic symptoms occurred on 10/22 (45.45%) patients with UCD and 1/2 (50%) patients with MCD, and abnormal laboratory indexes were detected in both. Resection and biopsy were performed on all patients. One out of two patients with MCD also received rituximab for upfront therapy. After a median of 4 years (IQR 1.5, 6) of follow-up time, the overall survival was 100% and the complete remission rate in UCD was 63%. There was no relapse or progression. CONCLUSIONS: Our series demonstrated that HV-UCD was the most common type in children. Resection and biopsy were used for both deterministic diagnoses and treatments. Despite the high possibility to develop systematic inflammation, children with CD showed promising outcomes. WHAT IS KNOWN: • Castleman disease is a rare lymphoproliferative disorder with limited cohort studies, especially in pediatrics. • The ubiquity of delayed confirmations and misdiagnoses points to a lack of knowledge about etiology and characteristics, which is a prerequisite for novel therapeutics. WHAT IS NEW: • We retrospectively reviewed and analyzed the clinical and pathological symptoms, laboratory and imaging features, and treatment outcomes of a Chinese pediatric cohort with Castleman disease. • Our work may improve the recognition and optimize the management of this rare disease in children.


Assuntos
Hiperplasia do Linfonodo Gigante , Humanos , Criança , Hiperplasia do Linfonodo Gigante/diagnóstico , Hiperplasia do Linfonodo Gigante/terapia , Hiperplasia do Linfonodo Gigante/patologia , Estudos Retrospectivos , Linfonodos/patologia , Resultado do Tratamento , China
7.
Chemistry ; 29(57): e202302146, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37449402

RESUMO

This work elucidates the potential impact of intramolecular H-bonds within the pore walls of covalent organic frameworks (COFs) on proton conductivity. Employing DaTta and TaTta as representative hosts, it was observed that their innate proton conductivities (σ) are both unsatisfactory and σ(DaTta)<σ(TaTta). Intriguingly, the performance of both imidazole-loaded products, Im@DaTta and Im@TaTta is greatly improved, and the σ of Im@DaTta (0.91×10-2  S cm-1 ) even surpasses that of Im@TaTta (3.73×10-3  S cm-1 ) under 100 °C and 98 % relative humidity. The structural analysis, gas adsorption tests, and activation energy calculations forecast the influence of imidazole on the H-bonded system within the framework, leading to observed changes in proton conductivity. It is hypothesized that intramolecular H-bonds within the COF framework impede efficient proton transmission. Nevertheless, the inclusion of an imidazole group disrupts these intramolecular bonds, leading to the formation of an abundance of intermolecular H-bonds within the pore channels, thus contributing to a dramatic increase in proton conductivity. The related calculation of Density Functional Theory (DFT) provides further evidence for this inference.

8.
Inorg Chem ; 62(29): 11570-11580, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37434493

RESUMO

With the gradual progress of research on proton-conducting metal-organic framework (MOFs), it has become a challenging task to find MOF materials that are easy to prepare and have low toxicity, high stability, and splendid proton conductivity. With the abovementioned objectives in mind, we selected the non-toxic organic ligand 2,5-furandicarboxylic acid and the low toxic quadrivalent metals zirconium(IV) or hafnium(IV) as starting materials and successfully obtained 2 three-dimensional porous MOFs, [M6O4(OH)4(FDC)4(OH)4(H2O)4] [M = ZrIV (1) and HfIV (2)], with ultrahigh water stability using a rapid and green synthesis approach. Their proton conductive ability is remarkable, thanks to the large number of Lewis acidic sites contained in their porous frameworks and the abundant H-bonding network, hydroxyl groups, as well as coordination and crystalline water molecules. The positive correlation of their proton conductivity with relative humidity (RH) and the temperature was observed. Notably, their optimized proton conductivities are 2.80 × 10-3 S·cm-1 of 1 and 3.38 × 10-3 S·cm-1 of 2 under 100 °C/98% RH, which are at the forefront of Zr(IV)/Hf(IV) MOFs with prominent proton conductivity. Logically, their framework features, nitrogen/water adsorption/desorption data, and activation energy values are integrated to deduce their proton conductivity and conducting mechanism differences.

9.
ACS Appl Mater Interfaces ; 15(29): 35128-35139, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462149

RESUMO

Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free -COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10-2 and 0.71 × 10-2 S cm-1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10-2 S cm-1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells.

10.
ACS Appl Mater Interfaces ; 15(27): 33148-33158, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384833

RESUMO

Assembling crystalline materials with high stability and high proton conductivity as a potential alternative to the Nafion membrane is a challenging topic in the field of energy materials. Herein, we concentrated on the creation and preparation of hydrazone-linked COFs with super-high stability to explore their proton conduction. Fortunately, two hydrazone-linked COFs, TpBth and TaBth, were solvothermally prepared by using benzene-1,3,5-tricarbohydrazide (Bth), 2,4,6-trihydroxy-benzene-1,3,5-tricarbaldehyde (Tp), and 2,4,6-tris(4-formylphenyl)-1,3,5-triazine (Ta) as monomers. Their structures were simulated by Material Studio 8.0 software and confirmed by the PXRD pattern, demonstrating a two-dimensional framework with AA packing. The presence of a large number of carbonyl groups as well as -NH-NH2- groups on the backbone is responsible for their super-high water stability as well as high water absorption capacity. AC impedance tests demonstrated a positive correlation between the water-assisted proton conductivity (σ) of the two COFs and the temperature and humidity. Under 100 °C/98% RH, the highest σ values of TpBth and TaBth can reach 2.11 × 10-4 and 0.62 × 10-5 S·cm-1, which are among the high σ values of the reported COFs. Their proton-conductive mechanisms were highlighted by structural analyses as well as N2 and H2O vapor adsorption data and activation energy values. Our systematic research affords ideas for the synthesis of proton-conducting COFs with high σ values.

11.
Clin Transl Med ; 13(2): e1193, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738110

RESUMO

BACKGROUND: Hirschsprung's disease (HSCR) is a relatively common congenital disability. Accumulating extracellular matrix (ECM) prompts intestinal fibrosis remodelling in the aganglionic segments of HSCR. The contributions of various cellular subsets in the fibrogenesis of HSCR segments are poorly understood. METHODS: Single-cell transcriptomics from 8 aganglionic segments and 5 normal segments of 7 HSCR subjects and 26 healthy segments of seven healthy donors were analysed. Fibrotic phenotype and alterations were explored using differential expression analysis and single-cell trajectory analysis. Fibrosis-related transcription factors were inferred through single-cell regulatory network inference. Bulk transcriptomic data, proteomic data, immunohistochemistry (IHC) and real-time polymerase chain reaction were used to validate the alterations in the HSCR intestine. RESULTS: Various collagen, fibronectin and laminin protein-coding genes expression were up-regulated in the stromal and glial cells of the HSCR intestine. The number of fibroblasts and myofibroblasts in the aganglionic segments increased, and more myofibroblasts were activated at an earlier stage in HSCR segments, which infers that there is an intestinal fibrosis phenotype in HSCR segments. The fibrotic regulators POSTN, ANXA1 and HSP70 were highly expressed in the ECM-related cellular subsets in the transitional segments and aganglionic segments. The transcription factor regulatory network revealed that fibrosis-related and megacolon-related NR2F1 in the fibroblasts and glial subsets was up-regulated in the aganglionic segment. CONCLUSIONS: This work identifies intestinal fibrosis and related regulators in aganglionic segments of HSCR; hence, anti-fibrotic therapy may be considered to prevent HSCR-associated enterocolitis (HAEC), relieve intestinal stricture and improve cell therapy.


Assuntos
Doença de Hirschsprung , Humanos , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Proteômica , Intestinos , Análise de Sequência de RNA
12.
Inorg Chem ; 62(7): 3036-3046, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36757379

RESUMO

In the field of sensing, finding high-performance amine molecular sensors has always been a challenging topic. Here, two highly stable 3D MOFs DUT-67(Hf) and DUT-67(Zr) with large specific surface areas and hierarchical pore structures were conveniently synthesized by solvothermal reaction of ZrCl4/HfCl4 with a simple organic ligand, 2,5-thiophene dicarboxylic acid (H2TDC) according to literature approach. By analyzing TGA data, it was found that the two MOFs have defects (unsaturated metal sites) that can interact with substrates (H2O and volatile amine gas), which is conducive to proton transfer and amine compound identification. Further experiments showed that at 100 °C and 98% relative humidity (RH), the optimized proton conductivities of DUT-67(Zr) and DUT-67(Hf) can reach the high values of 2.98 × 10-3 and 3.86 × 10-3 S cm-1, respectively. Moreover, the room temperature sensing characteristics of MOFs' to amine gases were evaluated at 68, 85 and 98% RHs, respectively. Impressively, the prepared MOFs-based sensors have the desired stability and higher sensitivity to amines. Under 68% RH, the detection limits of DUT-67(Zr) or DUT-67(Hf) for volatile amine gases were 0.5 (methylamine), 0.5 (dimethylamine) and 1 ppm (trimethylamine), and 0.5 (methylamine), 0.5 (dimethylamine) and 0.5 ppm (trimethylamine), respectively. As far as we know, this is the best performance of ammonia room temperature sensors in the past proton-conductive MOF sensors.

13.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363168

RESUMO

The Nb4AlC3 MAX phase can be regarded as a TMC structure with stacking faults, which has great potential as a novel solid hydrogen storage material. Herein, we used ab initio calculations for understanding the hydrogen incorporation into Nb4AlC3 MAX phases, including equilibrium structural characteristics, energy changes, electronic structures, bonding characteristics, and diffusion paths. According to the calculated results, H has thermal stability in the interstice of the Nb-Al layer, and the most probable insertion site is an octahedron (3-site) composed of three Nb atoms and three Al atoms. When C vacancies are introduced, the Nb-C layer has a specific storage capacity for H. In addition, Al vacancies can also be used as possible sites for H incorporation. Moreover, the introduction of vacancies significantly increase the hydrogen storage capacity of the MAX phase. According to the electronic structure and bonding characteristics, the excellent hydrogen storage ability of the Nb4AlC3 structure may be due to the formation of ionic bonds between H and Nb/Al. It is worth noting that the H-Al bond in the 1-site is a covalent bond and an ionic bond key mixture. The linear synchronous transit optimization study shows that only H diffusion in Al vacancies is not feasible. In conclusion, the Nb-Al layer in Nb4AlC3 can provide favorable conditions for the continuous insertion and subsequent extraction of H, while the vacancy structure is more suitable for H storage. Our work provides solid theoretical results for understanding the hydrogen incorporation into Nb4AlC3 MAX phases that can be helpful for the design of advanced hydrogen storage materials.

14.
Clin Transl Med ; 12(11): e1070, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333281

RESUMO

BACKGROUND: Biliary atresia (BA) is a devastating inflammatory and fibrosing cholangiopathy of neonates with unknown aetiology. We aim to investigate the relationship between these two main characteristics. METHODS: Single-cell RNA sequencing and spatial transcriptomics were performed on liver samples from a cohort of 14 objects (BA: n = 6; control: n = 8). We conducted data integration and cell-type annotation based on gene expression profiling. Furthermore, we identified fibrosis-related immune cells according to their spatial locations, GO and KEGG analysis. Finally, SPOTlight and CIBERSORTx were used to deconvolute ST data and microarray data of the GSE46960 cohorts, respectively. RESULTS: Immune subpopulations inhabiting the 'fibrotic niche' (areas of scarring), comprising 'intermediate' CD14++ CD16+ monocytes, scar-associated macrophages, natural killer T cells, transitional B cells and FCN3+ neutrophils were identified. GO and KEGG analyses showed that pathways including 'positive regulation of smooth muscle cell/fibroblast proliferation' and 'positive regulation of/response to VEGFR/VEGF/EGFR/FGF' were enriched in these cell types. Interactions analysis showed that communication among 'FGF_FGFR', 'RPS19-C5AR1', 'CD74_COPA/MIF/APP' and 'TNFRSF1A/B_GRN' was extensive. Finally, the results of deconvolution for ST data and microarray data validated that the proportions of certain identified fibrosis-related cell types we identified were increased in BA. DISCUSSION: Fibrosis is an important feature of BA, in which the immune system plays an important role. Our work reveals the subpopulations of immune cells enriched in the fibrotic niche of BA liver, as well as key related pathways and molecules; some are highlighted for the first time in liver fibrosis. These newly identified interactions might partly explain why the rate of liver fibrosis occurs much faster in BA than in other liver diseases. CONCLUSION: Our study revealed the molecular, cellular and spatial immune microenvironment of the fibrotic niche of BA.


Assuntos
Atresia Biliar , Hepatopatias , Recém-Nascido , Humanos , Atresia Biliar/genética , Atresia Biliar/metabolismo , Transcriptoma/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Hepatopatias/complicações
15.
Front Oncol ; 12: 989366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059682

RESUMO

Background: Myeloid sarcoma (MS) is a rare hematological tumor that presents with extramedullary tumor masses comprising myeloid blasts. A controversial issue is whether MS involving normal hematopoietic sites (liver, spleen, and lymph nodes) should be excluded in future studies. We aimed to compare MS characteristics and outcomes involving hematopoietic and non-hematopoietic sites and construct a prognostic nomogram exclusively for the latter. Methods: Data from patients diagnosed with MS between 2000 and 2018 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. According to the primary site, patients were classified as having MS involving hematopoietic sites (hMS) or non-hematopoietic sites (eMS). Clinical characteristics and survival outcomes were compared between the two groups using Wilcoxon, chi-square, and log-rank tests. Cox regression analysis was used to identify eMS prognostic factors to establish prognostic nomograms. The models' efficiency and value were assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results: In total, 694 patients were enrolled, including 86 with hMS and 608 with eMS. There were no sex, race or marital status distribution differences between the two groups. Patients with eMS had better overall and cancer-specific survival rates than those with hMS. Additionally, prognostic factor effects differed between the two groups. Patients with eMS were randomly divided into the training (number of patiens, n=425) and validation cohorts (n=183). Age, first primary tumor, primary site, and chemotherapy were used to establish nomograms. The C-index values of overall survival (OS) and cancer-specific survival (CSS) nomograms were 0.733 (validation: 0.728) and 0.722 (validation: 0.717), respectively. Moreover, ROC, calibration curves, and DCA confirmed our models' good discrimination and calibration ability and potential clinical utility value. Conclusion: Our study described the differences between patients with eMS and those with hMS. Moreover, we developed novel nomograms based on clinical and therapeutic factors to predict patients with eMS' 1-, 3- and 5-year survival rates.

16.
Front Oncol ; 12: 915833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003795

RESUMO

Pediatric acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) characterized by abnormal megakaryoblasts, and it is divided into the AMKL patients with Down syndrome (DS-AMKL) and AMKL patients without DS (non-DS-AMKL). Pediatric non-DS-AMKL is a heterogeneous disease with extremely poor outcome. We performed single-cell RNA sequencing (scRNA-seq) of the bone marrow from two CBFA2T3-GLIS2 fusion-positive and one RBM15-MKL1 fusion-positive non-DS-AMKL children. Meanwhile, we downloaded the scRNA-seq data of normal megakaryocyte (MK) cells of the fetal liver and bone marrow from healthy donors as normal controls. We conducted cell clustering, cell-type identification, inferCNV analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Monocle2 analysis to investigate the intratumoral heterogeneity of AMKL. Using canonical markers, we identified and characterized the abnormal blasts and other normal immune cells from three AMKL samples. We found intratumoral heterogeneity of AMKL in various cell-type proportions, malignant cells' diverse copy number variations (CNVs), maturities, significant genes expressions, and enriched pathways. We also identified potential markers for pediatric AMKL, namely, RACK1, ELOB, TRIR, NOP53, SELENOH, and CD81. Our work offered insight into the heterogeneity of pediatric acute megakaryoblastic leukemia and established the single-cell transcriptomic landscape of AMKL for the first time.

17.
Cell Death Dis ; 13(7): 620, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851002

RESUMO

Aplastic anemia (AA) is a blood disorder resulted from over-activated T-cell related hematopoietic failure, with the characterization of hypocellularity and enhanced adipogenic differentiation of mesenchymal stroma cells (MSCs) in bone marrow (BM). However, little is known about the relationship between immune imbalance and polarized adipogenic abnormity of BM microenvironment in this disease entity. In the present study, we differentiated BM-MSCs into osteoblastic or adipogenic lineages to mimic the osteo-adipogenic differentiation. Activated CD8+ T cells and interferon-γ (IFN-γ) were found to stimulate adipogenesis of BM-MSCs either in vitro or in vivo of AA mouse model. Interestingly, myeloid-derived suppressive cells (MDSCs), one of the immune-regulating populations, were decreased within BM of AA mice. We found that it was not CD11b+Ly6G+Ly6C- granulocytic-MDSCs (gMDSCs) but CD11b+Ly6G-Ly6C+ monocytic-MDSCs (mMDSCs) inhibiting both T cell proliferation and IFN-γ production via inducible nitric oxide synthetase (iNOS) pathway. Single-cell RNA-sequencing (scRNA-seq) of AA- and mMDSCs-treated murine BM cells revealed that mMDSCs transfusion could reconstitute BM hematopoietic progenitors by inhibiting T cells population and signature cytokines and decreasing immature Adipo-Cxcl12-abundant reticular cells within BM. Multi-injection of mMDSCs into AA mice reduced intra-BM T cells infiltration and suppressed BM adipogenesis, which subsequently restored the intra-BM immune balance and eventually prevented pancytopenia and hypo-hematopoiesis. In conclusion, adoptive transfusion of mMDSCs might be a novel immune-regulating strategy to treat AA, accounting for not only restoring the intra-BM immune balance but also improving stroma's multi-differentiating microenvironment.


Assuntos
Anemia Aplástica , Adipogenia , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Linfócitos T CD8-Positivos , Camundongos
18.
Inorg Chem ; 61(25): 9564-9579, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35700425

RESUMO

Hafnium (Hf)-based UiO-66 series metal-organic frameworks (MOFs) have been widely studied on gas storage, gas separation, reduction reaction, and other aspects since they were first prepared in 2012, but there are few studies on proton conductivity. In this work, one Hf-based MOF, Hf-UiO-66-fum showing UiO-66 structure, also known as MOF-801-Hf, was synthesized at room temperature using cheap fumaric acid as the bridging ligand, and then imidazole units were successfully introduced into MOF-801-Hf to obatin a doped product, Im@MOF-801-Hf. Note that both MOF-801-Hf and Im@MOF-801-Hf demonstrate excellent thermal, water, and acid-base stabilities. Expectedly, the maximum proton conductivity (σ) of Im@MOF-801-Hf (1.46 × 10-2 S·cm-1) is nearly 4 times greater than that of MOF-801-Hf (3.98 × 10-3 S·cm-1) under 100 °C and 98% relative humidity (RH). To explore their possible practical application value, we doped them into chitosan (CS) or Nafion membranes as fillers, namely, CS/MOF-801-Hf-X, CS/Im@MOF-801-Hf-Y, and Nafion/MOF-801-Hf-Z (X, Y, and Z are the doping percentages of MOF in the membrane, respectively). Intriguingly, it was found that CS/MOF-801-Hf-6 and CS/Im@MOF-801-Hf-4 indicated the highest σ values of 1.73 × 10-2 and 2.14 × 10-2 S·cm-1, respectively, under 100 °C and 98% RH and Nafion/MOF-801-Hf-9 also revealed a high σ value of 4.87 × 10-2 S·cm-1 under 80 °C and 98% RH, which showed varying degrees of enhancement compared to the original MOFs or pure CS and Nafion membranes. Our study illustrates that these Hf-based MOFs and related composite membranes offer great potential in electrochemical fields.


Assuntos
Quitosana , Estruturas Metalorgânicas , Polímeros de Fluorcarboneto , Háfnio , Estruturas Metalorgânicas/química , Ácidos Ftálicos , Prótons
19.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35407224

RESUMO

Hollow niobium oxide nanospheres were successfully synthesized by using prepared three-dimensional (3D) mesoporous carbon as the hard template. The 3D mesoporous carbon materials were prepared by using histidine as the carbon source and silica microspheres as the hard template. The samples were characterized by XRD, BET, SEM, TEM and other methods. The results show that the prepared niobium oxide nanospheres have a hollow spherical structure with an outer diameter of about 45 nm and possess a high specific surface area of 134.3 m2·g-1. Furthermore, the 3D mesoporous carbon materials have a typical porous structure with a high specific surface area of 893 m2·g-1. The hollow niobium oxide nanospheres exhibit high catalytic activity in oxidative desulfurization. Under optimal reaction conditions, the DBT conversion rate of the simulated oil is as high as 98.5%. Finally, a possible reaction mechanism is proposed.

20.
Clin Transl Med ; 12(3): e757, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297204

RESUMO

BACKGROUND: Multiple myeloma (MM) is a clinically and biologically heterogeneous plasma-cell malignancy. Despite extensive research, disease heterogeneity and relapse remain a big challenge in MM therapeutics. We tried to dissect this disease and identify novel biomarkers for patient stratification and treatment outcome prediction by applying single-cell technology. METHODS: We performed single-cell RNA sequencing (scRNA-seq) and variable-diversity-joining regions-targeted sequencing (scVDJ-seq) concurrently on bone marrow samples from a cohort of 18 patients with newly diagnosed MM (NDMM; n = 12) or refractory/relapsed MM (RRMM; n = 6). We analysed the malignant clonotypes using scVDJ-seq data and conducted data integration and cell-type annotation through the CCA algorithm based on gene expression profiling. Furthermore, we identified disease status-specific genes and modules by comparison of NDMM and RRMM datasets and explored the findings in a larger MM cohort from the MMRF CoMMpass study. RESULTS: We found that all the myeloma cells in either diagnosed or relapsed samples were dominated by a major clone, with a few subclones in several samples (n = 5). Next, we investigated the universal transcriptional features of myeloma cells and identified eight meta-programs correlated with this disease, especially meta-programs 1 and 8 (M1 and M8), which were the most significant and related to cell cycle and stress response, respectively. Furthermore, we classified the malignant plasma cells into eight clusters and found that the cell numbers in clusters 2/6/7 were exclusively higher in relapsed samples. Besides, we identified several attractive candidates for biomarkers (e.g. SMAD1 and STMN1) associated with disease progression and relapse in our dataset and related to overall survival in the CoMMpass dataset. CONCLUSIONS: Our data provide insights into the heterogeneity of MM as well as highlight the relevance of intra-tumour heterogeneity and discover novel biomarkers that might be a potent therapy.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia/genética , Prognóstico , RNA-Seq , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...